One-step arylthiolation of aromatic compounds by disulfide radical cations generated from oxidation of diaryl disulfides with aluminium chloride

Hiroshi Takeuchi* and Keisuke Suga

Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan. E-mail: takeuchi@kobe-u.ac.jp

Received (in Cambridge, UK) 30th May 2000, Accepted 7th July 2000 Published on the Web 9th August 2000

Reactions of di(phenyl and 4-tolyl) disulfides **1a** and **1b** with PhX **3a–e** (X = H, Me, Et, Ph and Cl) in the presence of AlCl₃ at 25 °C give diaryl sulfides **4–6** by aromatic arylthiolation *via* the disulfide radical cations **2**, along with thiophenols **7** formed in the incomplete reactions. Competitive intramolecular reactions of **2a** also yield diphenyl sulfide **4a** or/and thianthrene **8**. However, the reactions of bis(4-chlorophenyl and 4-fluorophenyl) disulfides **1c** and **1d** selectively lead to the aromatic arylthiolation in high yields. The Hammett $\rho = -8.8$ at 25 °C for the phenylthiolation in the reactions of **1a** is more negative than that ($\rho = -7.0$ at -30 °C) using SbCl₅ instead of AlCl₃, and the value $\rho = -8.0$ for the arylthiolation using **1d** is less negative than that using **1a**. These and the other mechanistic aspects support the arylthiolations *via* **2**.

We have already reported a new type of one-step electrophilic thiolation by Umpolung to cationic species such as disulfide radical cations¹ or sulfenium ions² from thiols or thiolate anions which are usually subject to nucleophilic thiolation. In our previous paper, the disulfide radical cations are formed from diaryl disulfides using H₂SO₄ in trifluoroacetic acid at 25 °C or using SbCl₅ in CH₂Cl₂ at -30 °C, and are capable of the one-step aromatic arylthiolation.¹ The arylthiolation using H₂SO₄ or SbCl₅ as the oxidant requires hard and/or expensive reaction conditions. However, the title arylthiolation conveniently occurs in the presence of an inexpensive oxidant, AlCl₃, at room temperature. The disulfide radical cation formed from di(phenyl or 4-tolyl) disulfide brings about an intramolecular reaction competing with the aromatic arylthiolation, but that formed from bis(4-chloro- or 4-fluorophenyl) disulfide selectively leads to the aromatic arylthiolation.

The oxidation to the disulfide radical cation from diphenyl disulfide has been proposed from spectroscopic observations in acid zeolites.^{3,4} However, the disulfide radical cation is highly reactive in solution, regardless of whether it is generated by chemical,^{5,6} photochemical⁷ or electrochemical oxidation,⁸ and thus spectral confirmation is very difficult in solution. We here demonstrate mechanistically that the diaryl disulfide radical cations may be reactive intermediates in the title arylthiolation.

Results and discussion

Reactions of diphenyl disulfide 1a with benzene 3a in the presence of \mbox{AlCl}_3

Reaction of 1a with benzene 3a in the presence of AlCl₃ at 25 °C under an atmosphere of N₂ afforded diphenyl sulfide 4a together with thiophenol 7a and thianthrene 8 (Table 1). Diphenyl sulfoxide 9 was formed under an atmosphere of air, not N₂ (Table 1). The decrease in yield of 8 with increasing reaction time and increasing amounts of AlCl₃ (Table 1) suggests that 8 is unstable under the reaction conditions. In fact, 8 (1.0 mmol) was completely decomposed in 3a (10 cm³) in the presence of AlCl₃ (4.0 mmol) under N₂ atmosphere for 72 h at 25 °C, and many unidentified products were formed according to GLC analysis. The yield of 7a decreased with increasing

Table 1	Reaction of diphenyl disulfide 1a (1.0 mmol) with benzene 3a
(10 cm^3)	in the presence of AlCl ₃ at 25 °C under a N ₂ atmosphere

AlCl₃/ mmol		Yield	Recovered			
	<i>t</i> /h	4 a	7a	8	9	(70) 1a
1.0	72	47	8.1	7.1	0	11
2.5	24	48	12	4.9	0	14
3.0	8.0	60	19	2.2	0	5.6
3.0	24	75	6.7	3.1	0	4.3
4.0	8.0	75	16	1.6	0	1.8
4.0	24	83	3.7	1.7	0	1.0
2.0 ^{<i>a</i>}	24	74	trace	18	trace	0.5
4.0 ^{<i>a</i>}	24	41	trace	0	13	0

^{*a*} In this case, the reaction was carried out under air, and the amount of 3a was 50 cm³ instead of 10 cm³.

reaction time. In fact, the reaction using 7a instead of 1a gave 4a (59%) (see Experimental section), and thus 7a must be an intermediate for the formation of 4a. We propose that 1a undergoes an oxidation by $AlCl_3$ to give a disulfide radical cation 2a as shown below, yielding 4a and PhS' by aromatic phenylthiolation of 2a accompanying 7a (Scheme 1); PhS' may be dimerised to give the starting material 1a.^{9,10} From the mechanism, the yield of 4a should be 100% when two molar 4a is formed from one molar 1a. Thus, the yields in Tables 1–3 are in agreement with the proposed reaction mechanism.

The reaction of dimethyl disulfide (1.0 mmol) with **3a** (10 cm³) in the presence of AlCl₃ (4.0 mmol) at 25 °C for 96 h produced thioanisole in 76% yield (see Experimental section). Further, when AlCl₃ or AgOAc was dissolved in dimethyl disulfide as the solvent at 25 °C, we could observe an electronic absorption at λ_{max} 375 nm because the sulfide was in excess. These observations exclude the possibility that the intermediate (for the aromatic methylthiolation) having the above absorption is a sulfonium ion [MeS–S⁺(Me)AlCl₂] Cl⁻ because [MeS–S⁺(Me)AlCl₂] Cl⁻ and [MeS–S⁺(Me)Ag] OAc⁻ should have different absorptions. Thus, the intermediate may be the radical cation of dimethyl disulfide since the radical cation generated from different metal oxidants AlCl₃ or AgOAc would show the

DOI: 10.1039/b0042781

J. Chem. Soc., Perkin Trans. 2, 2000, 1803–1808 1803

common absorption. It is possible that the diaryl disulfide radical cation **2** is analogously formed. In a previous paper,¹ we reported that diphenyl disulfide radical cation with electronic absorptions at λ_{max} 540 and 650 nm is formed from **1a** in TFA containing H₂SO₄. However, it is undeniable that these absorptions are due to the other species formed from the subsequent intramolecular reactions of **2a** since diphenyl disulfide radical cation has been proposed to have an absorption λ_{max} at 600–1500 nm in acid zeolites.⁴

The reaction of diphenyl disulfide 1a in *n*-hexane. Reaction of 1a using *n*-hexane in place of benzene 3a also produced 4a (54%) and 8 (14%) as reported in the Experimental section. From this result, we propose that the disulfide radical cation 2a undergoes intramolecular reactions by a heterolytic S–S scission accompanied by a simultaneous *ipso*-attack (step *a*)

and *ortho*-attack (step *b*), leading to the formation of **4a** and **8** (Scheme 2). It has been reported that **8** is formed *via* a disulfide dication from the radical cation **2a** in zeolites.^{3,4} In our reaction in solvent, it would be impossible for **8** to be formed *via* the dication generated by further oxidation of the unstable **2a**. Therefore, **8** might be formed by the intramolecular reaction competing with the intermolecular arylthiolation, as shown in Scheme 2. There is, however, the possibility that **4a** is formed by the intramolecular aromatic phenylthiolation. Therefore, the following experiment employing d₆-benzene was carried out in order to examine this possibility.

The reaction of diphenyl disulfide 1a with d_6 -benzene. The reaction of 1a using d_6 -benzene in place of 3a was performed. The GLC-mass analysis for the reaction mixture showed the

Table 2 Reaction of diphenyl disulfide 1a (1.0 mmol) with aromatic compounds PhY (10 cm³) such as toluene, ethylbenzene, biphenyl and chlorobenzene 3a-e in the presence of AlCl₃ at 25 °C under a N₂ atmosphere

	AlCl ₃ / mmol		Yield (%	6)	D				
PhY 3		t/h	4	5	6	4 a	7	8	la
b ; Y = Me	1.0	0.5	15	1.8	17	0	23	0	33
b ; $\mathbf{Y} = \mathbf{M}\mathbf{e}$	2.5	0.5	24	4.0	27	0	38	0	1.9
b ; $\mathbf{Y} = \mathbf{M}\mathbf{e}$	2.5	8.0	21	5.0	40	0.4	22	0	2.6
b ; $\mathbf{Y} = \mathbf{M}\mathbf{e}$	2.5	24	17	20	37	6.0	2.2	0	5.0
b ; $\mathbf{Y} = \mathbf{M}\mathbf{e}$	4.0	72	15	14	42	8.0	0.9	0	0
$\mathbf{c}; \mathbf{Y} = \mathbf{Et}$	4.0	2	13	7.5	58	0	16	0	0
$\mathbf{c}; \mathbf{Y} = \mathbf{E}\mathbf{t}$	4.0	24	8.7	21	64	1.6	0	0	0
d ; $Y = Ph^{a}$	4.0	2	0	0.3	39	31	11	1.5	0
d ; $Y = Ph^{a}$	4.0	24	0	1.9	45	32	1.1	0	0
e; Y = Cl	2.5	24	0.3	1.9	10	21	0	19	1.1
$\mathbf{e}; \mathbf{Y} = \mathbf{Cl}$	4.0	1.0	0.3	3.5	14	16	0	8.1	16
e; Y = Cl	4.0	24	1.8	4.3	25	37	0	0	12
e; Y = Cl	4.0	72	1.0	5.7	31	14	0	0	0

^{*a*} PhPh **3d** (5.0 mmol) dissolved in *n*-hexane (3.5 cm^3) was used in the reaction.

existence of d_5-d_{10} -PhSPh, not d_0-d_4 -PhSPh. If **4a** were formed by intramolecular phenylthiolation to **3a**, the reaction mixture would include d_0-d_4 -PhSPh. Therefore, d_5-d_{10} -PhSPh must have been formed only by the intermolecular reaction; d_6-d_{10} -PhSPh can be formed by deuteration of d_5 -PhSPh because D⁺ is formed from a σ -complex (refer to Scheme 1) given by the reaction of **2a** with d_6 -benzene. The reaction with d_0 -benzene **3a** produced a small amount of **8** (Table 1), but the reaction with d_6 -benzene did not yield **8**. Exactly what is happening here is not clear at the present time.

Reactions of diphenyl disulfide 1a with toluene, ethylbenzene, biphenyl and chlorobenzene 3b–e

The reactions of **1a** with **3b–e** also provided the aromatic phenylthiolation giving phenyl 2-, 3- and 4-substituted phenyl sulfides **4**, **5** and **6** (Table 2). In the reactions with **3b**, **3c** and **3e**, *ortho*-products **4ab**, **4ac** and **4ae** and *para*-products **6ab**, **6ac** and **6ae** tend to isomerise to the *meta*-isomers **5ab**, **5ac** and **5ae** under prolonged reaction conditions or in the presence of large amounts of AlCl₃. This reflects the high stability of the *meta*isomers compared to the *ortho-* and *para*-isomers under these reaction conditions.

The intramolecular products 4a and 8 are scarcely formed because intermolecular thiolation is favoured by the use of the highly reactive 3b and 3c, whereas their yields are high in the unfavourable intermolecular thiolation using the less nucleophilic 3e or using 3d diluted with *n*-hexane. These results strongly suggest that the intramolecular reaction (shown in Scheme 2) competes with the intermolecular phenylthiolation shown in Scheme 1.

Thiophenol **7a** is formed in the reactions with **3a–d**, but not produced in the reaction with **3e**. This implies that there is a pre-equilibrium between **1a** and **2a**; according to the Le Chatelier principle, this pre-equilibrium proceeds forward slowly in the reaction with **3e**, which is the less reactive to the phenylthiolation by **2a**, so that **7a** as the intermediate material could be completely consumed by the excess AlCl₃ remaining in the reaction system. By contrast, using the highly reactive **3a–d**, **7a** can be observed in the reaction mixture because AlCl₃ is rapidly consumed by the arylthiolation of **3a–d**.

Hammett plots. The *para*-attacking partial rate factors $k_{\rm f}$ were determined for the formation of *para*-products **6ab**, **6ac**, **6ad** and **6ae** in the reactions of **1a** with **3b**, **3c**, **3d** and **3e** in the presence of AlCl₃ at 25 °C. A Hammett correlation of log $k_{\rm f}$ against σ^+ gives a good linear plot with $\rho = -8.8$ (Fig. 1). Similarly, the Hammett correlation for the reaction of bis(4-fluorophenyl) disulfide **1d** gives a linear plot showing $\rho = -8.0$ (Fig. 2). The large negative ρ values in Figs. 1 and 2 indicate that

Fig. 1 Hammett plot σ_p vs. log k_f for the formation of 4-substituted aryl phenyl sulfides **6** in the reaction of diphenyl disulfide **1a** with aromatic compounds **3** in the presence of AlCl₃ at 25 °C.

Fig. 2 Hammett plot $\sigma_p vs. \log k_f$ for the formation of 4-substituted aryl 4-fluorophenyl sulfides **6** in the reaction of bis(4-fluorophenyl) disulfide **1d** with aromatic compounds **3** in the presence of AlCl₃ at 25 °C.

the arylthiolations proceed *via* cationic intermediates such as **2**. The disulfide radical cation **2d** from **1d** may have a less negative ρ value than **2a** from **1a** because the former cation is more reactive than the latter due to the electron-withdrawing group F; the more reactive intermediate shows the less selectivity (*i.e.* the less negative ρ value) for the aromatic substrates by the

Table 3 Reactions of bis(4-tolyl, 4-chlorophenyl and 4-fluorophenyl) disulfides $(4-X-C_6H_4)_2S_2$ **1b-d** (1.0 mmol) with aromatic compounds PhY **3** (10 cm³) in the presence of AlCl₃ (4.0 mmol) at 25 °C under a N₂ atmosphere

X of 1	Y of 3	t/h	Yield (%)									Recovered
			4	5	6	4x	5x	6x	4 a	7a	7	(%) 1
b ; $X = Me$	a ; X = H	0.5	0.3	0	45	5.4	1.9	5.6	2.1	1.8	7.0	8.9
b ; $\mathbf{X} = \mathbf{M}\mathbf{e}$	a ; X = H	1.0	3.5	3.0	52	6.6	3.2	8.1	5.7	2.9	3.5	1.3
b ; $\mathbf{X} = \mathbf{M}\mathbf{e}$	a ; X = H	24	3.9	4.2	42	0	0	0	38	0	trace	0
$\mathbf{c}; \mathbf{X} = \mathbf{Cl}$	a ; X = H	24	5.0	6.7	67	0	0	0	0	0	11	0
$\mathbf{c}; \mathbf{X} = \mathbf{Cl}$	e; X = Cl	24	4.0	0	69	0	0	0	0	0	6.0	20
$\mathbf{d}; \mathbf{X} = \mathbf{F}$	a ; X = H	6.0	0	0	80	0	0	0	0	0	trace	0
$\mathbf{d}; \mathbf{X} = \mathbf{F}$	b ; $X = Me$	3.0	18	9.3	57	0	0	0	0	0	2.2	0
$\mathbf{d}; \mathbf{X} = \mathbf{F}$	$\mathbf{c}; \mathbf{X} = \mathbf{E}\mathbf{t}$	6.0	7.0	9.0	54	0	0	0	0	0	20	0
$\mathbf{d}; \mathbf{X} = \mathbf{F}$	d ; $\mathbf{X} = \mathbf{Ph}^{a}$	3.0	0	6.8	69	0	0	0	0	0	3.7	2.5
$\mathbf{d} \cdot \mathbf{X} = \mathbf{F}$	e: X = Cl	6.0	1.9	11	57	0	0	0	0	0	0	0

reactivity–selectivity principle. Regarding $\rho = -9.1$ for the electrophilic aromatic substitution by acetyl cation using MeCOCl in the presence of AlCl₃ in ethylene dichloride at 25 °C,¹¹ the magnitude of the ρ values in our cases may be reasonable for the electrophilic aromatic arylthiolation by the disulfide radical cation. The possibility that a sulfenium ion ArS⁺ generated by S–S scission of **2** is the reactive intermediate can be excluded by the large negative ρ value; the sulfenium ion should be highly reactive (*i.e.* less selective to aromatic substrate), so that the ρ value for the sulfenium ion mechanism would be much less negative, as inferred from the values $\rho = -4.5$ or -5.2 reported for an aromatic amination^{12,13} by phenylnitrenium ion.

Furthermore, the Hammett ρ value -7.0 for the reaction using SbCl₅ is less negative than that (*i.e.* -8.8) for the reaction using AlCl₃. According to the reactivity–selectivity principle, the reactive intermediate for the former reaction should be more reactive than that for the latter. This is expected since the disulfide radical cation interacting with the soft counter-anion SbCl₅⁻⁻ is more reactive than that interacting with the hard counter-anion AlCl₃⁻⁻. Actually, the reaction using SbCl₅ proceeds very rapidly at -30 °C,¹ but the reaction using AlCl₃ occurs at a moderate speed at 25 °C.

We should consider another possibility, that the reactive intermediate for the phenylthiolation is a sulfonium ion, [PhS- $S^{+}(Ph)AlCl_{2}]Cl^{-}$, which has a σ -bond between the S atom and the Al atom.¹⁴ If this were correct, the sulfonium ion [PhS-S⁺(Ph)SbCl₄] Cl⁻ from SbCl₅ and **1a** would be less reactive than the sulfonium ion from AlCl₃ because of the steric effect of the very bulky SbCl₄ relative to AlCl₂. The above result that the reaction using SbCl₅ proceeds faster than that using AlCl₃ could rule out this possibility. The reaction of 1a with 3b or 3c in the presence of SbCl₅¹ or AlCl₃ afforded the *ortho*-products 4ab or 4ac in considerable yield. From the ortho-production, the possibility that the reactive intermediate is the very bulky sulfonium ion with Sb atom seems unlikely. On the other hand, the disulfide radical cation 2 interacting relatively weakly with the soft counter-anion SbCl₅⁻⁻ would give the *ortho*-products. The exclusion of [MeS-S⁺(Me)AlCl₂] Cl⁻ as intermediate in the aromatic methylthiolation, as described above, also rules out the sulfonium ion mechanism.

Reactions of bis(4-tolyl, 4-chlorophenyl and 4-fluorophenyl) disulfides 1b–d with aromatic compounds 3 in the presence of AlCl₃

The reaction of di(4-tolyl) disulfide 1b with benzene 3a in the presence of AlCl₃ gave phenyl *o*-, *m*- and *p*-tolyl sulfides 4ba, **5ba** and **6ba** by the intermolecular arylthiolation, together with 4-methylthiophenol **7b** (Table 3). In this reaction, the intramolecular reaction of the disulfide radical cation **2b** from **1b** cannot be avoided, leading to the formation of *p*-tolyl *o*-, *m*- and *p*-tolyl sulfides **4b**, **5b** and **6b** (Table 3); **4b** and **5b** are probably formed by isomerisation from **6b**. Diphenyl sulfide **4a** or thiophenol **7a** were also formed by demethylation from phenyl tolyl sulfides and ditolyl sulfide or from **7b**, respectively. The demethylation giving **4a** occurs favourably under prolonged reaction conditions (Table 3); in the prolonged reaction, **7a** as well as **7b** was consumed by oxidation.

Interestingly, the reactions of bis(4-chlorophenyl and 4-fluorophenyl) disulfides 1c and 1d with aromatic compounds led selectively to intermolecular arylthiolation even if a less reactive aromatic compound, such as chlorobenzene 3e, was used (Table 3). This selective arylthiolation is very valuable for the synthesis of diaryl disulfides containing Cl or F atoms at the *para*-position. An intramolecular reaction of the disulfide radical cation 2c or 2d from 1c or 1d does not occur in the presence of an aromatic nucleophile because the electronwithdrawing Cl or F group of 2 deactivates the intramolecular reaction, and thus intermolecular arylthiolation takes place.

Experimental

IR spectra were obtained on a JASCO Corporation A-302 spectrometer. ¹H NMR spectra were taken with a Nippondenshi PMX-60SI intrument (*J* values are given in Hz). GLC-MS were recorded with a Shimadzu QP-5000 spectrometer linked to a Shimadzu GC-17A; the column (15 m \times 0.25 mm) coated with DB-1 (0.25 µm) is made by J & W Scientific. GLC was performed with a Shimadzu GC-8A using a glass column (1 m \times 3 mm) packed with 10% SE-30 on 60–80 mesh Chromosorb W (AW-DMCS). Two runs agreed within 3% error for the yields of the products which were determined by replicate GLC analyses. The isolation or separation (as a mixture) of the products was carried out by thin layer chromatography (using Merck Silica Gel 60PF254).

Benzene 3a, toluene 3b, ethylbenzene 3c, chlorobenzene 3e, d₆-benzene, *n*-hexane and ethyl acetate were purified by standard methods before use. The following compounds were reagent grade (Nacalai Tesque), and used without further purification: diphenyl disulfide 1a, di(4-tolyl) disulfide 1b, biphenyl 3d, diphenyl sulfide 4a, thiophenol 7a, 4-methylthiophenol 7b, 4-chlorothiophenol 7c, 4-fluorothiophenol 7d, thianthrene 8 and AlCl₃. Bis(4-chlorophenyl and 4-fluorophenyl) disulfides 1c and 1d were prepared by oxidation (by bubbling air) of 4-chlorophenyl and 4-fluorophenyl mercaptans in DMSO at room temperature for 70 h, and confirmed by the following data. 1c: The yellow crystalline product had mp 66.2–68.4 °C; v_{max} (KBr)/cm⁻¹ 3050, 1560, 1467, 1380, 1096, 1010, 815 (parasubstituted phenyl), 775, 740 and 490; $\delta_{\rm H}$ (CDCl₃) 7.37 (8H, AB q, J 9.0, phenyl H); m/z 288 and 286 (M⁺), 145, 143, 108, 99, 82, 75, 73, 69 and 63 (Found: C, 50.17; H, 2.81. Calc. for C₁₂H₈- S_2Cl_2 : C, 50.18; H, 2.81%). 1d: Liquid, v_{max} (Nujol)/cm⁻¹ 3040, 1580, 1480, 1390, 1285, 1220, 1158, 1095, 1012, 823 (*para*-substituted phenyl), 618 and 497; $\delta_{\rm H}$ (CDCl₃) 6.80–7.75 (8H, m, phenyl H); *m/z* 254 (M⁺), 127, 83, 69 and 57 (Found: C, 56.51; H, 3.37. Calc. for C₁₂H₈S₂F₂: C, 56.67; H, 3.17%).

Reactions of diphenyl disulfide 1a with benzene 3a in the presence of ${\rm AlCl}_3$

The reactions of **1a** with **3a** were carried out in the presence of AlCl₃ as shown in Table 1. After the reaction, H₂O (10 cm³) was added, and the organic layer was extracted with ethyl acetate. The products 4a, 7a and 8 were isolated by thin layer chromatography, and showed identical spectra to authentic samples. The yields were determined by GLC analysis (Table 1). The reaction of **1a** (0.5 mmol) with d_6 -benzene (5.0 cm³) was performed in the presence of $\rm AlCl_3$ (2.0 mmol) at 25 $^{\circ}\rm C$ for 24 h under a N₂ atmosphere. Following similar treatment to that performed on the reaction mixture, the GLC-mass analysis for the organic layer indicated the presence of PhSPh containing not d_0-d_4 but d_5-d_{10} . The products **4a** (54%) and **8** (14%) were also obtained in the reaction of 1a (1.0 mmol) in n-hexane (10 cm³) in the presence of AlCl₃ (2.0 mmol) at 25 °C for 24 h under a N₂ atmosphere; in this case, the reaction mixture was treated as described above.

The reaction with $3a (10 \text{ cm}^3)$ using thiophenol 7a (1.0 mmol) instead of 1a was performed employing AlCl₃ (4.0 mmol) at 25 °C for 72 h under a N₂ atmosphere, and gave 4a in 59% yield after treating the reaction mixture as described above.

The reaction with **3a** (10 cm³) using dimethyl disulfide (1.0 mmol) in place of **1a** was carried out in the presence of AlCl₃ (4.0 mmol) at 25 °C for 96 h, and produced thioanisole in 76% yield after similar treatment to that performed on the reaction mixture.

Reactions of diphenyl disulfide 1a with toluene 3b, ethylbenzene 3c, biphenyl 3d and chlorobenzene 3e in the presence of AlCl₃

The reactions of **1a** with **3b–e** were performed in the presence of AlCl₃, under the conditions described in Table 2. The results are summarised in Table 2. The procedures used for isolation and the determination of their yields are given above. Phenyl 2- and 4-tolyl sulfides **4ab** and **6ab**, 2- and 4-ethylphenyl phenyl sulfides **4ac** and **6ac**, and 2- and 4-ethylphenyl phenyl sulfide **4ae** and **6ac** were confirmed by comparison with their spectral data with those of the compounds synthesized in the previous report.¹

The following products were also confirmed by the spectral data as shown below.

Phenyl 3-tolyl sulfide 5ab. This compound was obtained as a mixture with **4ab** and **6ab**, and gave the following spectra; m/z (GLC-MS) 200 (M⁺), 185 (M⁺ – Me), 184, 165, 152, 121, 115, 99, 91, 89, 86, 77, 69, 65, 63 and 51. The order **4ab** < **5ab** < **6ab** for the retention time by GLC supports the *meta*-structure. The yield was determined with the assumption that the GLC response factors of **5ab** and **6ab** are identical.

3-Ethylphenyl phenyl sulfide 5ac. This compound was also obtained as a mixture with **4ac** and **6ac**, and gave the following spectra; m/z (GLC-MS) 214 (M⁺), 199 (M⁺ – Me), 185 (M⁺ – Et), 184, 166, 165, 105, 99, 91, 89, 77, 65 and 51. The order **4ac** < **5ac** < **6ac** for the GLC retention times also suggests the *meta*-structure. The yield was determined by the same method as for **5ab**.

3-Phenyldiphenyl sulfide 5ad. This product was obtained as a mixture with **6ad**, and gave the following spectra; m/z (GLC-MS) 262 (M⁺), 185 (M⁺ – Ph), 184, 152, 151, 115, 77 and 51. The order for the GLC retention times is **5ad** < **6ad**, and m/z 184 (M⁺ – PhH) and 152 (M⁺ – PhS) for **5ad** show almost the same intensity as those for **6ad**. The observations indicate

the structure for **5ad** to be the *meta*-isomer; were it the *ortho*isomer, the intensity for m/z 184 and 152 should be greatly higher than that for the *para*-product **6ad**. The yield of this compound was determined with the assumption that the GLC response factor of this compound is identical with that of **6ad**.

4-Phenyldiphenyl sulfide 6ad. This compound was obtained as a mixture containing a small amount of **5ad**. The spectra for the mixture are as follows: δ_{H} (CDCl₃) 7.0–8.0 (14H, m, phenyl H); *m/z* (GLC-MS) 262 (M⁺), 185, 184, 152, 151, 115, 77, 63 and 51. The yield of **6ad** was determined as described above.

3-Chlorophenyl phenyl sulfide 5ae. This product was also obtained as a mixture with **4ae** and **6ae**, and showed the following spectra; m/z (GLC-MS) 222 and 220 (M⁺), 186, 184 (M⁺ – HCl), 152, 139, 108, 92, 79, 77, 75, 69, 65, 63, 51 and 50. The peak m/z 186 for **4ae** and **6ae** was stronger than the peak m/z 185 for **5ae**. Under short-duration reaction conditions, the product was almost all **6ae**. These results suggest the structures. The yields for **5ae** were determined by GLC as described above. The GLC retention time order was **4ae** < **6ae** < **5ae**.

Reactions of bis(4-tolyl, 4-chlorophenyl and 4-fluorophenyl) disulfides 1b–d with aromatic compounds 3 in the presence of AlCl₃

The reactions of **1b–d** with aromatics were conducted under the conditions given in Table 3. The results are summarised in Table 3. The products phenyl *o-*, *m-* and *p*-tolyl sulfides **4ba**, **5ba** and **6ba** in the reaction of **1b** with benzene **3a** are identical with the products **4ab**, **5ab** and **6ab**, respectively, in the reaction of **1a** with **3b**. The products 2-, 3- and 4-chlorophenyl phenyl sulfides **4ca**, **5ca** and **6ca** in the reaction of **1c** with **3a** are also identical with **4ae**, **5ae** and **6ae**, respectively. The identities of the following products were confirmed by spectroscopic data.

2-, 3- and 4-Tolyl 4-tolyl sulfides 4b, 5b and 6b. A mixture of these products and **1b** was obtained: $\delta_{\rm H}(\rm CDCl_3)$ 2.22–2.53 (6H, br, Me) and 6.93–7.40 (8H, m, phenyl H) (Found: C, 78.30; H, 6.30. Calc. for C₁₄H₁₄S: C, 78.46; H, 6.58%). The total amount of **4b, 5b** and **6b** was determined by the deduction of **1b** from this mixture by GLC analysis. The GLC-MS for these products are as follows. **4b**: m/z 214 (M⁺), 199, 184, 165, 122 (M⁺ – 4-MePhH), 121, 105, 91, 78, 77, 65 and 45. **5b**: m/z 214 (M⁺), 199, 184, 165, 121, 105, 91, 77, 65, 44 and 40. **6b**: m/z 214 (M⁺), 199, 184, 165, 105, 91, 77, 65 and 45. The peak for m/z 122 supports the structure of **4b**. The order (**4b** < **5b** < **6b**) for the retention time by GLC suggests the structures. The yields for the products were determined by GLC as described above.

2-Chlorophenyl 4-chlorophenyl sulfide 4ce. This was obtained as a mixture with bis(4-chlorophenyl) sulfide **6ce**, and the structure was confirmed by the GLC-MS; m/z 256 and 254 (M⁺), 218 (M⁺ – HCl), 184, 139, 110, 109, 108, 91, 75, 63 and 50. The peak m/z 218 and the shorter retention time than that of **6ce** strongly support the structure. The yield was determined by GLC analysis as described above.

Bis(4-chlorophenyl) sulfide 6ce. This compound was obtained as a mixture with **4ce**: v_{max} (KBr)/cm⁻¹ 3060, 1570, 1560, 1472, 1390, 1100, 1015, 827 and 817 (*para*-substituted phenyl), 742 (*meta*-substituted phenyl of **5ce**), 557 and 488; $\delta_{\rm H}$ (CDCl₃) 7.25 (4H, almost singlet, phenyl H); GLC-MS *m/z* 256 and 254 (M⁺), 219, 184, 110, 109, 108, 91, 75, 69, 63 and 50 (Found: C, 56.50; H, 3.31. Calc. for C₁₂H₈SCl₂: C, 56.48; H, 3.16%). The yield was determined as described above.

4-Fluorophenyl phenyl sulfide 6da. Liquid, v_{max} (Nujol)/cm⁻¹ 3060, 1582, 1483, 1472, 1432, 1218, 1085, 1059, 830 (*para*-substituted phenyl), 738 and 688 (mono-substituted phenyl),

625 and 520; $\delta_{\rm H}$ (CDCl₃) 6.83–7.65 (9H, m, 9H, phenyl H); GLC-MS *m*/*z* 204 (M⁺), 183, 170, 102, 77, 65 and 51 (Found: C, 70.57; H, 4.67. Calc. for C₁₂H₉FS: C, 70.56; H, 4.41%). The GLC peaks corresponding to the *ortho-* and *meta-*isomers were not observed, and thus the reaction of **1d** with **3a** may selectively produce **6da**. The yield was determined as described above.

4-Fluorophenyl 2-, 3- and 4-tolyl sulfides 4db, 5db and 6db. These compounds were obtained as a mixture; $\delta_{\rm H}(\rm CDCl_3)$ 2.28, 2.32 and 2.37 (3H, three s, Me) and 6.93–7.80 (8H, m, phenyl H) (Found: C, 71.50; H, 5.01. Calc. for C₁₃H₁₁FS: C, 71.53; H, 5.08%). **4db**; GLC-MS *m*/*z* 218 (M⁺), 203, 202, 183, 165, 122 (M⁺ - C₆H₅F), 121, 91, 65 and 45. **5db**; GLC-MS *m*/*z* 218 (M⁺), 217, 203, 202, 183, 165, 108, 91, 83, 77, 65, 45 and 40. **6db**; GLC-MS *m*/*z* 218 (M⁺), 217, 203, 202, 185, 183, 165, 108, 91, 83, 65 and 45. The peak *m*/*z* 122 indicates the *ortho*-structure **4db**. The relative intensity for *m*/*z* 217 (M⁺ - H) for **6db** was higher than that for **5db**. The order for the retention time by GLC was **4db** < **5db** < **6db**. The results strongly suggest the structures, and the yields for the compounds were determined by GLC analysis as described above.

4-Fluorophenyl 2-, 3- and 4-ethylphenyl sulfides 4dc, 5dc and 6dc. These products were obtained as a mixture: $\delta_{\rm H}(\rm CDCl_3)$ 1.20 (3H, t, Me), 2.38–3.09 (2H, m, CH₂) and 6.75–7.75 (8H, m, phenyl H) (Found: C, 72.26; H, 5.62. Calc. for C₁₄H₁₃FS: C, 72.38; H, 5.64%). **4dc**; GLC-MS *m*/*z* 232 (M⁺), 217, 215, 203, 202, 184, 183, 136, 135, 105, 103, 91, 78, 77, 65 and 51. **5dc**; GLC-MS *m*/*z* 232 (M⁺), 217, 203, 202, 184, 183, 107, 105, 83, 77, 63 and 51. **6dc**; GLC-MS *m*/*z* 232 (M⁺), 217, 203, 202, 185, 183, 127, 105, 99, 83, 77, 63 and 51. The peak *m*/*z* 215 (M⁺ – CH₄) shows the *ortho*-structure **4dc**. The relative intensity of *m*/*z* 217 (M⁺ – Me) for **6dc** was higher than that for **5dc**. The order for the retention times by GLC was **4dc** < **5dc** < **6dc**. The results support the structures, and the yields for the products were determined by GLC analysis as described above.

4-Fluoro-3'- and 4'-phenyldiphenyl sulfides 5dd and 6dd. These were obtained as a mixture; $\delta_{\rm H}(\rm CDCl_3)$ 6.88–8.08 (13H, m, phenyl H) (Found: C, 77.16; H, 4.66. Calc. for $\rm C_{18}H_{13}FS$: C, 77.11; H, 4.67%). **5dd**; GLC-MS *m/z* 280 (M⁺), 258, 246, 202, 184, 152, 151, 127, 83, 77, 63, 51 and 40. **6dd**; GLC-MS *m/z* 280 (M⁺), 258, 248, 246, 202, 184, 152, 151, 127, 115, 83, 77, 75, 63 and 51. The GLC retention time for **5dd** was shorter than that for **6dd**. The relative intensities of *m/z* 184 (M⁺ – C₆H₅F) and 152 (M⁺ – C₆H₅FS) for **5dd** were almost the same as those for **6dd**; the relative intensities for the *ortho*-isomer should be higher than those for the *meta-* and *para*-isomers. The results fit the structures well, and the yields for the products were determined by GLC analysis as described above.

2-, 3- and 4-Chloro-4'-fluorodiphenyl sulfides 4de, 5de and 6de. A mixture of products was obtained (Found: C, 60.53; H, 3.13. Calc. for $C_{12}H_8CIS$: C, 60.38; H, 3.38%). These products were confirmed by GLC-MS and the GLC retention times 4de > **6de** > **5de**; in fact, the retention time **4ae** < **6ae** < **5ae** was observed for the chloro-substituted compound, as described above. **4de**; 240 and 238 (M^+), 203, 202, 183, 170, 157, 127, 101, 83, 75, 69, 63, 57, 50 and 40. **5de**; 240 and 238 (M^+), 203, 202, 183, 170, 157, 127, 108, 101, 83, 75, 69, 63, 57, 51, 50 and 45. **6de**; 240 and 238 (M^+), 203, 202, 183, 170, 157, 127, 108, 101, 83, 75, 69, 63, 57, 50 and 45.

Hammett plots

A solution containing **1a** (1.0 mmol) and aromatic substrate [**3a** (91 mmol) and **3b** (19 mmol), **3a** (90 mmol) and **3c** (16 mmol), **3a** (111 mmol) and **3d** (10 mmol), or **3a** (10 mmol) and **3e** (94 mmol)] in the presence of AlCl₃ (4.0 mmol) was allowed to stand at 25 °C for 1 h under a N₂ atmosphere. After the reaction mixture had been treated as described above, the relative ratios of **6ab**, **6ac**, **6ad** and **6ae** to **4a** were determined by GLC. The relative ratios were almost the same as those for the reactions of 0.5 h duration. The *para*-attacking partial rate factors (k_f) for **3b**-e were calculated on the basis of the above relative ratios, initial concentration of the aromatic compounds, the number of C–H bonds of benzene and *para*-C–H bonds of the substituted aromatics. A linear plot with $\rho = -8.8$ was obtained as seen in Fig. 1. The correlation coefficient was -0.990.

Solutions consisting of 1d (0.50 mmol) and aromatic substrate [3a (51 mmol) and 3b (5.0 mmol), 3a (50 mmol) and 3c (5.0 mmol), 3a (56 mmol) and 3d (5.0 mmol), or 3a (5.8 mmol) and 3e (46 mmol)] were also treated under the same conditions as above. Using the same procedure as described above, a linear plot with $\rho = -8.0$ (having a correlation coefficient of -0.998) was obtained (Fig. 2).

References

- 1 H. Takeuchi, T. Hiyama, N. Kamai and H. Oya, J. Chem. Soc., Perkin Trans. 2, 1997, 2301.
- 2 H. Takeuchi, H. Oya, T. Yanase, K. Itou, T. Adachi, H. Sugiura and N. Hayashi, J. Chem. Soc., Perkin Trans. 2, 1994, 825.
- 3 P. S. Lakkaraju, D. Zhou and H. D. Roth, J. Chem. Soc., Perkin Trans. 2, 1998, 1119.
- 4 V. Marti, L. Fernandez, V. Fornes, H. Garcia and H. D. Roth, J. Chem. Soc., Perkin Trans. 2, 1999, 145.
- 5 M. Wejchanjudek and B. Perkowskaspiewak, *Polym. Degrad. Stab.*, 1995, **48**, 131.
- 6 K. Okaizu, N. Iwasaki, K. Yamamoto, H. Nishide and E. Tsuchida, Bull. Chem. Soc. Jpn., 1994, 67, 1456.
- 7 K. Yamamoto, K. Oyaizu and E. Tsuchida, *Macromol. Chem. Phys.*, 1994, **195**, 3087.
- 8 K. Yamamoto, E. Tsuchida, H. Nishida, S. Yoshida and Y. S. Park, J. Electrochem. Soc., 1992, 139, 2401.
- 9 L. Craine and M. Raban, Chem. Rev., 1989, 89, 689.
- 10 F. A. Davis, E. R. Fretz and C. J. Horners, J. Org. Chem., 1973, 38, 690.
- 11 J. A. Hirsch, *Concepts in Theoretical Organic Chemistry*, Allyn and Bacon, Inc., Boston, 1974, p. 179.
- 12 H. Takeuchi and K. Takano, J. Chem. Soc., Perkin Trans. 1, 1986, 611.
- 13 H. Takeuchi, T. Taniguchi and T. Ueda, J. Chem. Soc., Perkin Trans. 2, 2000, 295.
- 14 T. Mukaiyama and K. Suzuki, Chem. Lett., 1993, 1.